Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Protein & Cell ; (12): 202-216, 2023.
Article in English | WPRIM | ID: wpr-982531

ABSTRACT

Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.


Subject(s)
Humans , Mesenchymal Stem Cells/physiology , Cellular Senescence , Homeostasis , Cell Cycle Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Mitochondria/metabolism , Electron Transport Complex III/metabolism , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL